Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A zwitterion of 1,5-bis(2-hydroxy-benzamido)-3-azapentane: a twodimensional hydrogen-bonding network involving dimers

Hui-Min Liu, Lei He, Xiao-Lan Luo and Wen-Qin Zhang*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
Correspondence e-mail: wqzhang@tju.edu.cn

Received 1 November 2005
Accepted 13 January 2006
Online 31 January 2006

The title compound, 2-\{ N-[2-(2-hydroxybenzamido)ethylammonioethyl]aminocarbonyl\}phenolate, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$, crystallizes in a zwitterionic form as a result of intermolecular proton transfer and possesses a negatively charged phenolate group and a protonated amino group. The 2-hydroxybenzamide and 2-(aminocarbonyl)phenolate moieties attached to the two ends of the $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ backbone adopt a cis conformation in relation to this backbone. All Nand O -bound H atoms are involved in hydrogen-bond formation; the zwitterions are first linked into head-to-tail dimers, which are further organized into a two-dimensional network parallel to the crystallographic $b c$ plane.

Comment

There is considerable interest in complexes that are capable of mimicking the active sites of metalloproteins (Cao et al., 2004; Tolman \& Spencer, 2001; Xing \& DeRose, 2001). Generally, these model complexes are obtained from bulky multidentate ligands in order to construct an environment similar to that found in the proteins. 1,5-Bis(2-hydroxybenzamido)-3-azapentane, bhap, is a potentially pentadentate coordinating ligand containing N - and O -donor atoms, and has been synthesized in order to study its coordination behavior with several transition metal ions (e.g. $\mathrm{Zn}^{2+}, \mathrm{Cu}^{2+}$ and Co^{2+}, which are the most abundant and important metals in biology; Lipscomb \& Sträter, 1996). In previous reports, this compound exhibited different chelating modes in the formation of mononuclear or binuclear complexes with copper(II) (Sureshan \& Bhattacharya, 1999) and iron(III) ions (Dash \& Rath, 2004; Rath et al., 2002). However, to the best of our knowledge, there are no published data related to the crystal structure of either bhap or its complexes mentioned above.

It is commonly accepted that the aliphatic amino group acts as a comparatively strong base, whereas the phenol group, as
an acid, can be deprotonated in a polar medium. Recently, it was reported that some 5,5'-derivatives of 3-diethylamino-methyl-2,2'-biphenol exist as zwitterions in the crystalline state (Ng et al., 2002; Bartoszak-Adamska et al., 2000; Brzezinski et al., 1998, 1995). The reason for the formation of the zwitterions, confirmed by experimental and theoretical methods, is that the $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ group, as a relatively strong base, causes deprotonation of the nearby phenol group and thereby builds a short intramolecular hydrogen bond involving a six-membered ring. Other zwitterionic species, such as the salicylideneimine Schiff bases (Mondal et al., 2002; Hazell et al., 1997), are also formed as the result of an intramolecular proton transfer. These results prompted us to look into the structure of the bhap molecule, which also bears both aliphatic amine and phenol groups. We present here the crystal structure of the title compound, (I), which is the zwitterion of bhap obtained by recrystallization from methanol/water.

(I)

The structure of compound (I) (Fig. 1) is composed of a 2-hydroxybenzamide group and a 2-(aminocarbonyl)phenolate moiety linked by a protonated 3-azapentanediyl chain. The zwitterionic nature is confirmed by the location and free refinement of the relevant H atoms. The two pendant moieties attached to the ends of the $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ backbone adopt a cis conformation, as shown by the $\mathrm{N} 1-\mathrm{C} 8-$ $\mathrm{C} 9-\mathrm{N} 2\left[65.1(2)^{\circ}\right]$ and $\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 3$ torsion angles [78.6 (2) ${ }^{\circ}$]. Similar to the previously studied 5,5'-derivatives of 3-diethylaminomethyl-2,2'-biphenol, (I) exists as a zwitterion, a H atom from one phenol hydroxy group having been transferred to the 3-azapentanediyl N atom. The $\mathrm{C} 8-\mathrm{C} 9-$

Figure 1
A view of the structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. The dashed lines represent intramolecular hydrogen bonds.
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$ backbone does not adopt a normal anti staggered conformation as is the case for some polymethylene carbon chains (Wang et al., 2004, 2005); the C10-N2-C9C 8 and $\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$ torsion angles are -176.63 (14) and $86.81(19)^{\circ}$, and atom C 11 deviates from the $\mathrm{C} 10 / \mathrm{N} 2 / \mathrm{C} 9 /$ C8 plane by 1.4242 (9) \AA. The protonated N 2 atom exhibits tetrahedral $s p^{3}$ hybridization, whereas the two amide N atoms display planar $s p^{2}$ hybridization. As can be see from Table 1, the $\mathrm{N} 1-\mathrm{C} 8$ and $\mathrm{N} 3-\mathrm{C} 11$ bond distances are shorter than the $\mathrm{N} 2-\mathrm{C} 9$ and $\mathrm{N} 2-\mathrm{C} 10$ bonds as a result of the $p-\pi$ conjugation. The planarity of the benzamide group is well documented (Halfpenny \& Small, 1980; Palmer et al., 1995). In our case, the 2-hydroxybenzamide moiety is also planar, with atoms O 2 and N 1 deviating by 0.2131 (6) and -0.2611 (6) \AA from the $\mathrm{C} 1-$ C7/O1 plane. The 2-(aminocarbonyl)phenolate moiety is also planar, with a mean deviation of 0.0267 (5) \AA. The two benzene rings subtend a dihedral angle of 73.4 (6) ${ }^{\circ}$. The $\mathrm{O} 1-$ $\mathrm{C} 1-\mathrm{C} 6\left[121.7(2)^{\circ}\right]$ and $\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 13$ [122.92(15) ${ }^{\circ}$] angles are slightly larger than the ideal angle of 120° for $s p^{2}$ hybridization. The bond lengths in the two benzene groups show significant differences at the oxygen substitution sites. The negative charge of atom O 4 is partly transferred to the benzene ring, lengthening the $\mathrm{C} 13-\mathrm{C} 18$ and $\mathrm{C} 18-\mathrm{C} 17$ bonds to 1.414 (3) and 1.409 (3) \AA, respectively. The extensive delocalization of the negative charge also causes $\mathrm{C} 18-\mathrm{O} 4$ [1.320 (2) Å] to be slightly shorter than $\mathrm{C} 1-\mathrm{O} 1[1.359$ (3) Å].

All H atoms bonded to O or N atoms are involved in hydrogen bonds. Within the intramolecular hydrogen-bonding system (Fig. 1 and Table 2), atom O 2 atom acts as a double (bifurcated) hydrogen-bond acceptor towards the $\mathrm{N}^{2}-\mathrm{H} 2 B$

Figure 2
A packing diagram for (I), showing the two-dimensional supramolecular network involving the dimers. For the sake of clarity, H atoms not involved in the intermolecular hydrogen bonds have been omitted. Atoms marked with a hash sign (\#) or an asterisk (*) are at the symmetry positions $(-x, 1-y,-z)$ and $\left(-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, respectively.
group and the $\mathrm{O} 1-\mathrm{H} 1$ hydroxy group, forming seven- and sixmembered rings, respectively. The former hydrogen bond is comparatively weak because it forms the longer branch of an asymmetric three-centre system (see below). Whereas atom O2 lies in a position close to the hydroxy group, carbonyl atom O3 of the 2-(aminocarbonyl)phenolate moiety is located opposite the negatively charged O 4 atom, with $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-$ O 2 and $\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$ torsion angles of 12.4 (3) and $-175.45(16)^{\circ}$, respectively. Such an arrangement allows carbonyl atom O 3 , like atom O 2 , to act as a hydrogen-bond acceptor towards the same $\mathrm{N} 2^{+}-\mathrm{H} 2 B \mathrm{H}$ atom, thus forming a three-centre hydrogen-bond system and a second sevenmembered ring. The final intramolecular hydrogen bond involves the phenolate O 4 atom, which acts as acceptor towards the $\mathrm{N} 3-\mathrm{H} 3$ group, forming a six-membered ring.

The crystal packing is characterized by two intermolecular hydrogen bonds, which lead to a supramolecular network pattern. As shown in Fig. 2, the zwitterions are dimerized head-to-tail through three pairs of $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4, \mathrm{C} 5-$ $\mathrm{H} 5 \cdots \mathrm{O} 4$ and $\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 3$ hydrogen-bond interactions. These centrosymmetric dimers are joined by $\mathrm{N} 2^{+}-\mathrm{H} 2 A \cdots \mathrm{O} 4$ interactions into a two-dimensional network parallel to the crystallographic $b c$ plane.

Experimental

The title compound was synthesized according to the method reported by Sureshan \& Bhattacharya (1999). A mixture of methyl salicylate ($12.20 \mathrm{~g}, 0.1 \mathrm{~mol}$) and diethylenetriamine ($5.16 \mathrm{~g}, 0.05 \mathrm{~mol}$) were stirred at 322 K for 12 h . The product was crystallized from methanol to afford a colorless solid (m.p. 424-425 K, yield 77%). Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a methanol-water (1:1) solution.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{r}=343.38$
Monoclinic, $P 2_{1} / c$
$a=10.775$ (2) A
$b=11.668$ (2) \AA
$c=14.290$ (3) \AA
$\beta=100.572$ (3) ${ }^{\circ}$
$V=1766.1(6) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.972, T_{\text {max }}=0.992$
9668 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.118$
$S=1.00$
3616 reflections
246 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2404 reflections
$\theta=2.6-24.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.30 \times 0.28 \times 0.12 \mathrm{~mm}$

$$
\begin{aligned}
& 3616 \text { independent reflections } \\
& 2100 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.036 \\
& \theta_{\max }=26.4^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-14 \rightarrow 13 \\
& l=-12 \rightarrow 17 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0557 P)^{2}\right. \\
& \quad+0.2173 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

O2-C7	$1.251(2)$	N2-C9	$1.479(2)$
O3-C12	$1.244(2)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.490(2)$
N1-C8	$1.448(2)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.452(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$121.96(17)$	$\mathrm{C} 12-\mathrm{N} 3-\mathrm{C} 11$	$123.58(16)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10$	$114.78(14)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(2)$	$2.01(2)$	$2.865(2)$	$165.7(18)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\mathrm{ii}}$	$1.04(2)$	$1.61(2)$	$2.6342(19)$	$167.0(19)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$	$0.97(2)$	$1.75(2)$	$2.6933(19)$	$163.7(17)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2$	$0.97(2)$	$2.689(19)$	$3.109(2)$	$106.5(13)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 4$	$0.890(19)$	$1.87(2)$	$2.6475(19)$	$145.4(18)$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	$1.05(3)$	$1.51(3)$	$2.518(2)$	$158(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.93	2.60	$3.380(3)$	141
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.71	$3.413(2)$	130

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

All C-bound H atoms were positioned geometrically and refined as riding [with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$]. The H atoms attached to the hydroxy O atom and to the N atoms were located in a difference map and refined freely.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1772). Services for accessing these data are described at the back of the journal.

References

Bartoszak-Adamska, E., Wojciechowski, G., Jaskólski, M. \& Brzezinski, B. (2000). J. Mol. Struct. 525, 253-259.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Brzezinski, B., Radziejewski, P., Rabold, A. \& Zundel, G. (1995). J. Mol. Struct. 355, 185-191.
Brzezinski, B., Urjasz, H., Wojciechowski, G. \& Zundel, G. (1998). J. Mol. Struct. 470, 335-339.
Cao, Y. D., Zheng, Q. Y., Chen, C. F., Hu, H. M. \& Huang, Z. T. (2004). Inorg. Chim. Acta, 357, 316-320.
Dash, A. C. \& Rath, R. K. (2004). Indian J. Chem. Sect. A, 43, 310-314.
Halfpenny, J. \& Small, W. H. (1980). Acta Cryst. B36, 1194-1196.
Hazell, A., Overgaard, J., Lausen, S. K., Hu, H. \& Khoo, L. E. (1997). Acta Cryst. C53, 640-641.
Lipscomb, W. N. \& Sträter, N. (1996). Chem. Res. 96, 2375-2434.
Mondal, B., Lahiri, G. K., Naumov, P. \& Ng, S. W. (2002). J. Mol. Struct. 613, 131-135.
Ng, S. W., Wojciechowski, G. \& Brzezinski, B. (2002). J. Mol. Struct. 616, 33-36.
Palmer, R. A., Richards, A. J. \& Lisgarten, J. N. (1995). Acta Cryst. C51, 23382340.

Rath, H., Pradhan, G. C., Mohanty, P. \& Dash, A. C. (2002). Indian J. Chem. Sect. A, 41, 525-527.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sureshan, C. A. \& Bhattacharya, P. K. (1999). Indian J. Chem. Sect. A, 38, 723726.

Tolman, W. B. \& Spencer, D. J. E. (2001). Curr. Opin. Chem. Biol. 5, 188-195.
Wang, W., Liu, H.-M. \& Zhang, W.-Q. (2004). Acta Cryst. E60, o1979o1980.
Wang, W., Liu, H.-M. \& Zhang, W.-Q. (2005). Acta Cryst. E61, o206-o207.
Xing, G. \& DeRose, V. J. (2001). Curr. Opin. Chem. Biol. 5, 196-200.

